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KAHNEMAN-TVERSKY (KT) AND 
REFERENCE CLASS FORECASTING

In 1977, Daniel Kahneman and Amos 
Tversky published an influential paper 
describing the psychological issues lead-
ing to poor accuracy with expert intuitive 
forecasts, such as bankers assessing a new 
business or a counselor predicting the 
likely achievement of a student. This pro-
cedure has been subsequently discussed 
in Thinking, Fast and Slow (Kahneman, 
2011) and Noise (Kahneman and col-
leagues, 2021). In the original paper they 
show that forecasters have access to two 
general types of information: singular 
information (also referred to as the “in-
side” view) about a project or situation, 
and distributional information (also re-
ferred to as the “outside” view) about the 
outcomes of similar cases. Unfortunately, 
individuals frequently rely on singular in-
formation such as the unique details of a 
business startup while ignoring relevant 
statistical information on the success of 
similar startups. Their general finding is 
that individuals predict by matching the 
prediction to the impression a case makes 
upon them. For example, the impression 
a job candidate makes in an interview 
(e.g., “She was smart, well-spoken, and 
definitely in the top 5% of interviews I’ve 

had!”) becomes the corresponding predic-
tion of success in the role.    

Extreme forecasts should be adjusted 
by considering the predictability of the 
task based on the diagnostic value of 
the information used to produce the es-
timate. Specifically, predictions should 
only match impressions when a task is 
perfectly predictable based on the impres-
sion. In contrast, predictions in situations 
with little or no predictability (e.g., fair 
coin flips) should simply match the class 
average or base rate frequency of heads or 
tails. For situations in between these ex-
tremes, the prediction or forecast should 
be regressive and fall between the class 
average and the matching impression in 
direct proportion to the predictability, 
as measured by the correlation between 
predictions and outcomes.

Their paper outlined a formal corrective 
procedure, which became the basis for 
reference class forecasting as shown in 
equation 1. Their equation works equally 
well for binary probability forecasts such 
as probability of success, or continuous 
forecasts such as annual sales. In this 
paper I focus on binary forecasting and 
will refer to this equation as Kahneman-
Tversky Calibration (KTC):
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     Fc=(Fu×Pv )+(1-Pv )×BRrc      Equation 1
Where Fc = corrected forecast, Fu = 
uncorrected forecast, Pv = predictive 
validity (the historically observed cor-
relation between uncorrected forecasts 
and outcomes), BRrc = base rate for the 
relevant reference class. Note that Fc is 
a weighted average of the base rate and 
the original uncorrected forecast.

Kahneman and Tversky then outlined 
five steps for implementing the correc-
tive procedure (i.e., recalibrating) for 
forecasts:
1.  Select an appropriate reference class 

of similar cases or projects with binary 
outcomes (e.g., probability of success 
rate for new employees, probability of 
successful rocket launch, medical de-
vice approval, etc.). 

2.  Estimate distributional information for 
the reference class. 

3.  Obtain the intuitive prediction from 
the relevant expert.  

4.  Determine the predictive validity (e.g., 
correlation between predictions and 
outcomes). 

5. Correct the initial forecast.  

I illustrate this approach with a simple 
example. Assume that we are a consulting 
firm for a biotechnology company and are 
asked to evaluate a team’s predicted prob-
ability of success (PPOS) for an important 
upcoming study of a new biologic treat-
ment. We learn that the company keeps 
detailed records of all development team 
forecasts and final study outcomes that 
we will use as our reference class (step 1). 
Analysis of the historical data shows that 
over the last seven years the company 
conducted 81 proof-of-concept studies 
with 32 successes, for 32/81 ≈ 40% fre-
quency of success (FOS) sample mean for 
our Bernoulli reference class distribution 
(step 2). Analysis of the corresponding 
team forecasts shows an average predict-
ed success rate of 60%. The current team’s 
PPOS for the planned study is 70% (step 
3). Assuming that the distribution of pri-
or PPOS predictions and outcomes rep-
resents the best available reference class 
for future studies, we have the relevant 
data for the steps 1-3, up to the point of 
estimating predictive validity. That is our 
next challenge.

Estimating the predictive validity (step 4) 
can be approached from several aspects, 
the simplest being adopting an average 
correlation observed in human predictive 
performance in the social sciences of Pv ≈ 
0.28 (Kahneman and colleagues, 2021). 
While this is easy, it is a crude approxi-
mation that I would recommend using 
only when no other data are available or 
alternatives are possible. An alternative 
approach is to estimate the correlation 
by using a percent concordance based on 
subject matter expert inputs as described 
by Kahneman and Tversky (1977) and 
Kahneman and colleagues (2021). Lastly, 
whenever possible, I recommend calculat-
ing the actual correlation from relevant 
forecasts and outcome data if they are 
available. For this example, I will use the 
hypothetical 81 records of predictions 
and outcomes to calculate the standard 
Pearson correlation between the PPOS 
forecasts and outcomes.  

Based on the hypothetical data, the re-
sulting correlation is 0.29, which is quite 
close to the average correlation estimate 

Key Points
■  Kahneman and Tversky’s original corrective proce-

dure for intuitive subjective forecasts is the foun-
dation of reference class forecasting which can be 
restated in Bayesian form.

■  The resulting mathematics use the closed form Beta 
conjugate model, which is easily implemented on 
spreadsheets for business use.

■  A key benefit of the Bayesian approach is that it 
produces the same point estimate results as Kahn-
eman and Tversky’s original procedure with the 
associated uncertainty estimates, to inform busi-
ness decisions.

Table 1. Simple Recalibration Result using KTC Method

Base Rate FOS

40%

Team PPOS

70%

Predictive Validity

29%

Recalibrated PPOS

48%
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of 0.28. We now combine this informa-
tion with the KTC procedure to correct 
the team’s prediction (step 5) with the 
results shown in Table 1.

Note that the effect of the calibration 
moves the team forecast PPOS (70%) 
towards the base success frequency in 
proportion to the predictive validity. This 
effect is often initially surprising for ex-
perts and teams producing forecasts. A 
common complaint is that the results are 
conservative and are unlikely to forecast 
success for rare events – but this should 
be expected because of the nature of rare 
events. Forecast methods that correctly 
predict rare outliers generally over-pre-
dict in the much larger majority of typical 
cases, producing poor overall accuracy.  

It is important to be aware that the cost 
of errors can vary based on the task (e.g., 
predicting success of clinical trials) and 
type (e.g., false positives and false nega-
tives). For instance, consistently inflated 
probability of success estimates can lead 
to costly “false positive” investments in 
late-stage studies and needless patient 
exposure to treatments that may not suc-
ceed. Conversely, consistent pessimistic 
forecasts can lead to “false negative” 
missed opportunities to execute trials 
leading to new patient treatments as well 
as unrealized financial returns for inves-
tors. In general, the goal of the forecaster 
is to produce unbiased, calibrated esti-
mates for decision makers unless there 
is a clear reason to do otherwise. Finally, 
while the recalibrated results are not guar-
anteed to be accurate, they are by defini-
tion more regressive, produce probability 
estimates much closer to the historical 
frequency of success (i.e., calibrated “in 
the large” [Harrell, 2022]), and provide 
plausible probabilities for the large major-
ity of predicted events.

RECASTING KTC CORRECTION  
IN BAYESIAN FORM

One shortcoming of the original KTC cali-
bration method is that while it produces 
recalibrated point estimates, it does not 
explicitly account for uncertainty. Ideally, 
we want an approach that can provide 

both a point estimate and the associated 
uncertainty.  

In viewing the KT recalibration proce-
dure, a number of aspects appear similar 
to, and could potentially be approached 
from, the perspective of Bayesian statis-
tics. For example, a standard version of 
Bayes’ rule illustrates the approach:

P(H|D) ∝ (ie,is proportional to)  P(H) × P(D|H)   
Equation 2

The separate parts of equation 2 have spe-
cific definitions:
a.  P(H|D) = the probability that hypoth-

esis “H” is true given the data “D” ≡ 
Posterior

b.  P(H) = the probability that hypothesis 
“H” is true ≡ Prior knowledge (equiva-
lent to base rate)

c.  P(D|H) = probability that data “D” is 
observed if hypothesis “H” is true ≡ 
Likelihood (this is represented by new 
information from an intuitive forecast 
based on singular information)

The key point is that the posterior proba-
bility is a combination of the prior knowl-
edge and some additional information 
supplied. While not immediately appar-
ent in the mathematics, Bayes’ rule can be 
viewed as a weighted average of the prior 
knowledge and new information (e.g., the 
team forecast), analogous to equation 1.

In their original paper, Kahneman and 
Tversky state that in their approach the 
concept of the distributional base rate 
data is not equivalent to the prior prob-
ability because it is defined by the nature 
of the data, and the Bayesian prior is 
defined in terms of the sequence of data 
acquisition.  

However, by recasting the approach in a 
sequential manner, and assuming that the 
historic distributions of PPOS predictions 
and outcomes are a reasonable estimate 
of our prior state of knowledge, we can re-
cast their approach using the language of 
Bayes’ rule. So the base rate becomes our 
prior that we want to update given new 
information (e.g., the development team’s 
forecast) for the planned study. This pro-
duces a final posterior distribution for the 



FORESIGHT  2024: Q124

PPOS that will be our best estimate of the 
probability distribution of success for the 
study.  

In determining the weight that new 
information provides, Kahneman and 
Tversky’s predictive validity can be used 
to generate estimates of the Bayesian 
effective sample sizes for the new infor-
mation and resulting posterior. From the 
posterior distribution we can compute 
any desired point estimate, range, or per-
centile. Table 2 illustrates the conceptual 
mapping between KT Recalibration and 
the Bayesian approach.

INTRODUCING THE  
BETA DISTRIBUTION

The Bayesian approach presented here 
uses the conjugate Beta distribution for 
binomial observations. This means that 
there is no need to perform complicated 
mathematics to find the posterior distri-
bution. We simply use the observation 
(e.g., a forecast estimate of PPOS) to 
update our prior PPOS to find the final 
conjugate Beta posterior distribution 
(Bolstad, 2017).  

Our Beta conjugate model is easily cal-
culated using standard Excel or other 
spreadsheet functions, or even by hand. I 
will use this nomenclature to specify the 
prior and posterior functions:

a.  Beta Distribution = Beta(a,b), where 
a and b are hyperparameters repre-
senting the number of successes and 

failures observed, respectively

b.  The Beta equivalent sample size (ESS) = a + b 
 Equation 3

c.  The Beta expected value (mean) = a/(a + b) 
  Equation 4

d.   The posterior distribution is simply the 
sum of the “new hyperparameters” (a’) 
and (b’) based on the new information 
and the prior hyperparameters

Posterior = Beta(a+a',b+b')  Equation 5

Note that the hyperparameters (a’ and 
b’) can be interpreted as the number of 
“pseudo successes and failures” implied 
by the Bayesian equivalent sample size 
for the development team forecast, based 
on the predictive validity. This can be a 
confusing concept when first encountered 
but should become clear as I work through 
the calculations discussed below.

To illustrate, let’s start with the refer-
ence class information from the earlier 
example (49 successes and 32 failures) to 
construct an informed prior distribution 
for the probability of success. This repre-
sents our “prior” knowledge about what 
the probability of success might be and is 
termed an “informed” prior because it is 
based on relevant data. This is in contrast 
to what is sometimes termed an “unin-
formed” prior typically represented by a 
flat, uniform distribution representing 
our state of ignorance about the possible 
probability of success.  

Table 2. Kahneman-Tversky Calibration and Bayes Rule Formulation

Comment(s)

The prior is an “informed” distribution 
based on previous or relevant data in con-
trast to a flat or uniform prior

The subjective forecast provides new infor-
mation from the team that can be used to 
calculate a posterior distribution

Predictive validity can be used to estimate 
the effective sample size (i.e., impact 
weight) for the new information (i.e., the 
uncorrected forecast)

The posterior distribution can be used 
to calculate point estimates, uncertainty 
ranges, etc.

Number

1

2

3

4

Kahneman – Tversky Concept

Reference Class (Base  
Rate) Distributional Data

Subjective Forecast

Predictive Validity

Recalibrated Forecast

Bayes Rule

Informed Prior  
Distribution for  
Updating

New Information

Effective Sample Size

Posterior Distribution
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Figure 1 shows our resulting prior as 
a Beta (32 successes, 49 failures) prob-
ability distribution function, (PDF) where 
the mean equals the mean point estimate 
(shown as a vertical dashed line near 
the peak of the curve) of the reference 
class, and uncertainty is illustrated by 
the spread of the probability distribution 
function. 

PREDICTIVE VALIDITY AND  
EFFECTIVE SAMPLE SIZE

As stated earlier, we can use predictive va-
lidity to “weigh” the new information pro-
vided by the team forecast. Specifically, 
we want to estimate a sample size that we 
can separate into a number of “pseudo” 
success (a’) and failure (b’) hyperparam-
eters, in order to update our prior. Like 
the KTC approach, our Bayesian inference 
will be a weighted average.  

Using the predictive validity of 0.29 and 
equation 1, we know that our prior distri-
bution must have a weight of (1 – 29%) 
or 71%. Since we know the prior total 
sample size, we can use this information 
to determine the sample size of our pos-
terior. Then the difference between the 
prior and posterior will be the equivalent 
sample size of our new information (i.e., 
from the team’s forecast). I illustrate this 
mathematically in the equations below:

npost=nprior/((1-Pv ) )           Equation 6
nnew=npost- nprior                    Equation 7

For our clinical trial example, we can eas-
ily solve equation 6 and round the result 
to obtain an equivalent sample size for 
the posterior of npost=81/.71≈114. (While 
rounding results is not required, I am do-
ing this to obtain integer values consistent 
with the concept of an integer sample size 
of discrete successes and failures.) Using 
this value in equation 7 produces a final 
effective sample size of nnew≈33. This is 
the “weight” of the development team’s 
forecast for probability of success. 

Lastly, using the original team PPOS es-
timate of 70%, we can restate this as a 
sample estimate and use equations 3 and 
4 to solve for the corresponding “pseudo 
successes” a’ and “pseudo failures” b’ Beta 
hyperparameters:

Beta Mean = a'/(a'+b') ≡ a'/ESS

where ESS is the effective sample size 
estimate for the team POS forecast = 33.  
By equating the mean with the subjec-
tive forecast of 70%, we can solve for the 
a’ hyperparameter as the product of the 
sample size and the forecast estimate, 
which after rounding becomes a'≈23. The 
corresponding b’ hyperparameter is sim-
ply the difference between the effective 
sample size and the a’ estimate, which 
becomes 10.

At this point, we can graph the beta func-
tion representations with the respective 
means (shown as vertical dashed lines) 
of the team forecast information with the 
prior, as shown in Figure 2.    

Note that the wide range of the team 
forecast PDF (from approximately 50% 
to 90%) reflects the imprecision of the 

Figure 2. Example Beta Prior and Forecast PDFs

Figure 1. Example Beta Prior PDF
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team’s forecast based on the smaller ef-
fective sample size than for the prior dis-
tribution. In addition, the graph clearly 
shows that the team forecast distribution 
has little overlap with the prior. This likely 
represents optimism bias, which is com-
monly observed with “inside” view fore-
casts. This visualization of the discrepancy 
between the reference class distribution 
of frequency of success and the team fore-
cast can be an excellent entry point for a 
discussion with leadership regarding why 
the team believes the proposed new study 
has a much higher probability of success 
than the reference class. Perhaps the team 
has a strong rationale based on additional 
information that is convincing – or after 
further thought and discussion, they may 
reconsider their forecast. 

RECALIBRATED STUDY PPOS FORECAST 
USING BAYESIAN INFERENCE

We now have a beta model for our prior 
knowledge of clinical trials success and 

the team forecast for likely success. We 
are in position to use the conjugate beta 
binomial model to compute our posterior 
prediction of the probability of success 
(POS), using equation 5:

Posterior POS = Beta(32+23, 49+10) = Beta(55, 59)

Our final PPOS distribution is shown 
in Figure 3 below, along with the prior 
and team forecast, in what is sometimes 
referred to as a “Bayesian Triplot” graph. 
Note that the posterior PDF is close to the 
prior, with a mean POS estimate of 48% 
(or 55/[55 + 59]), which equals the KTC 
PPOS estimate shown in Table 2. This is 
due to the prior sample size of 81 being 
more than twice the sample size of 33 for 
the team’s forecast, based on the historic 
predictive validity. In so many words, the 
team historical forecasts have low predic-
tive validity, and consequently the reca-
librated forecast is anchored more on the 
prior reference class distribution. 

Using our posterior beta distribution, 
we can easily calculate point estimates 
for the mean, 10th percentile, and 90th 
percentile (i.e., 80% Credible Interval) 
for direct comparison with the original 
approach by Kahneman and Tversky. The 
results are shown in Table 3 where the 
means are identical. In addition, I’ve also 
provided the relevant credible intervals. 
While an uncertainty range is not gener-
ally requested by decision makers, it is 
an important element in forecasting that 
illustrates how likely or unlikely a par-
ticular point estimate may be. That said, 
showing the uncertainty visually as in 
Figure 3 is likely to be much more impact-
ful to decision makers than listing tabular 
data.

Figure 3. Example Beta Prior, Forecast, and Posterior 
PPOS Distribution

Table 3. KT and Bayesian Data Comparison

KTC Recalibration

Variable

Team PPOS

Base Rate

Recall PPOS

Mean

70%

40%

48%

Variable

Team PPOS

Prior PPOS

Post PPOS

Mean 

70%

40%

48%

P10

60%

33%

42%

P50

70%

39%

48%

P90

80%

47%

54%

Bayesian Recalibration
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DISCUSSION

The example I have shown here is optimis-
tic in that the hypothetical organization 
kept specific records of forecast PPOS and 
the corresponding outcomes (i.e., success 
or failure). Unfortunately, this is not a 
common occurrence, and some of you 
may be thinking: How do you calculate 
the relevant beta distributions with less 
data? For example, one potential scenario 
is where a company or organization does 
not keep detailed records, but has experts 
who can estimate the inputs for a prior 
distribution.

For example, let us imagine a biotech com-
pany with a new proposed Phase 2 study 
where the development team predicts a 
64% probability of success. Interviews 
with the relevant experts conclude that 
the company has run at least 14 relatively 
similar Phase 2 studies over the previous 
eight years with about half being success-
ful. Unfortunately, the actual forecast 
probabilities of success were not captured 
for later comparison with outcomes. How 
might one proceed? While there are no 
perfect rules, here I would estimate the 
prior distribution information at face 
value, with a total sample size of 14 with 
half of the studies being successful and 
half failing. That would imply a prior Beta 
(7, 7) probability density function.

To estimate predictive validity I would use 
the percent concordance task outlined in 
Kahneman and colleagues (2021), where 
relevant experts are asked to consider two 
studies at random. What proportion of 
the time could they correctly identify the 
study most likely to be successful? Using 
Kahneman’s concordance chart, we can 
convert this to an equivalent correlation 
coefficient (i.e., predictive validity Pv). For 
example, imagine that an interviewed ex-
pert gives a common percent concordance 
estimate of 60%, which corresponds to a 
Pv ≈ 0.30 (Kahneman and colleagues, 
2021, p. 104). Using this information, we 
can then estimate the posterior sample 
size using equation 6 as 20, and the team’s 
forecast sample size then becomes 20 – 
14 = 6. Together with the team forecast 
of 64%, this implies a corresponding Beta 

function for the team forecast ≈ Beta (4, 
2), because 64% of 6 is about 4. The poste-
rior distribution (using equation 5) then 
becomes Beta (11, 9) with a mean ≈ 55%. 

The point of this discussion is to illustrate 
the flexibility of this approach and the 
need for some level of judgment to obtain 
estimates that allow for useful computa-
tion. In situations such as my example 
here, the results are rough approxima-
tions as illustrated by the large spread 
in the beta distributions of the prior, 
forecast, and posterior shown in Figure 
4. Lastly, using the Bayesian approach 
for this example illustrates the potential 
value of showing the underlying estimate 
uncertainty to decision makers, which is 
not apparent when using simple point 
estimates. In fact, simply showing esti-
mates visually (as in Figure 4) to elicit 
further team and decision-maker discus-
sions on risk and uncertainty may be an 
important benefit of using this approach. 
For example, while this example’s mean 
posterior 55% point estimate of potential 
success for a trial (or project, etc.) may 
exceed some investment thresholds, an 
approximate 50% implied uncertainty 
range would likely foster requests for ad-
ditional information and potential risk 
mitigations before endorsing investment.

One critique of this approach is that 
teams could counteract recalibration by 

Figure 4. Example Beta Prior, Forecast, and Posterior PPOS Distri-
bution
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greatly inflating their PPOS estimates 
(e.g., to 100%) in order to keep the “recali-
brated” estimates as high as possible. It is 
true that a motivated team could “game” 
this approach to give their programs the 
most optimistic assessment possible; the 
mathematics alone cannot easily prevent 
this. However, this is where good fore-
casting processes can help minimize gam-
ing and support production of “decision 
grade” forecasts useful for leadership. 
For example, several potential processes 
could include

a.  Tracking and recording team and reca-
librated forecasts, as well as outcomes 
over time. This data can be used to de-
termine base rates and show any large 
changes in the system (e.g., predictive 
validity or frequency of success) that 
could be due to gaming. Finally, captur-
ing the forecasts and outcomes allows 
organizations to determine whether 
team forecasts, recalibrated Bayesian 
forecasts, or simple naïve base-rate 
forecasts are the best approach using 
proper scoring rules.  

b.  Recalibration should be performed 
by an independent group to avoid 

assessments by individuals with a vest-
ed interest in the outcome. In pharma 
and energy companies, this type of 
activity would typically be the responsi-
bility of Portfolio and Decision Analysis 
functions outside development teams, 
but could also be done by others.  

c.  Decision makers should be shown the 
full Bayesian “triplot” graphs and not 
just single-point estimates. This allows 
leadership to see the original and recal- 
ibrated estimates along with the asso-
ciated uncertainty. Grossly optimistic 
estimates will stand out and can be a 
catalyst for discussion between teams 
and the decision makers (e.g., “Why are 
you saying project X has a POS of 75% 
when our frequency of success has only 
been 40%? What is your rationale?”).  

In conclusion, I find this simple Bayesian 
approach quite useful. However, it is 
neither a perfect approach nor an auto-
matic guarantee of accurate probability of 
success forecasts. Garbage in still equals 
garbage out, and without good forecast-
ing processes this approach, as well as 
most others, can potentially be gamed or 
rendered ineffective. As Kahneman and 
Tversky stated in their original paper, the 
results are likely to be more realistic than 
forecasts produced with sole focus on 
the internal “inside” details of a project. 
There is nothing magic here, just a simple, 
rational procedure for producing useful 
forecasts for decision making. I hope you 
also find this to be the case.
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